Analytic Hypoellipticity at Non-symplectic Poisson-treves Strata for Sums of Squares of Vector Fields

نویسندگان

  • ANTONIO BOVE
  • D. S. Tartakoff
چکیده

We consider an operator P which is a sum of squares of vector fields with analytic coefficients. The operator has a nonsymplectic characteristic manifold, but the rank of the symplectic form σ is not constant on CharP . Moreover the Hamilton foliation of the non symplectic stratum of the Poisson-Treves stratification for P consists of closed curves in a ring-shaped open set around the origin. We prove that then P is analytic hypoelliptic on that open set. And we note explicitly that the local Gevrey hypoellipticity for P is G and that this is sharp.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic Hypoellipticity in Dimension Two

A simple geometric condition is sufficient for analytic hypoellipticity of sums of squares of two vector fields in R. This condition is proved to be necessary for generic vector fields and for various special cases, and to be both necessary and sufficient for a closely related family of operators.

متن کامل

A Class of Sums of Squares with a given Poisson-treves Stratification

We study a class of sum of squares exhibiting the same Poisson-Treves stratification as the Oleinik-Radkevič operator. We find three types of operators having distinct microlocal structures. For one of these we prove a Gevrey hypoellipticity theorem analogous to our recent result for the corresponding Oleinik-Radkevič operator.

متن کامل

Intermediate Optimal Gevrey Exponents Occur

Hypoellipticity in Gevrey classesG is characterized for a simple family of sums of squares of vector fields satisfying the bracket hypothesis, with analytic coefficients. It is shown that hypoellipticity holds if and only if s is greater than or equal to an optimal exponent that may take on any rational value.

متن کامل

Analyticity for Singular Sums of Squares of Degenerate Vector Fields

Recently, J.J. Kohn in [6] proved hypoellipticity for (∗k) P = LL + L|z| L with L = ∂ ∂z + iz ∂ ∂t , i.e., −P = L ∗ L + (zL)zL, a singular sum of squares of complex vector fields on the complex Heisenberg group, an operator which exhibits a loss of k − 1 derivatives. Subsequently, in [4], M. Derridj and D. S. Tartakoff proved analytic hypoellipticity for this operator using rather different met...

متن کامل

Global Analytic Hypoellipticity in the Presence of Symmetry

A linear partial differential operator, L, is said to be globally analytic hypoelliptic on some real analytic manifold M without boundary if, for any u ∈ D′(M) such that Lu ∈ C(M), one has u ∈ C(M). It is of some interest to determine under what circumstances this property holds, especially for sums of squares of vector fields satisfying the bracket hypothesis of Hörmander, and for related oper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006